当前位置:首页 > 日记 > 正文

每代电脑cpu都有哪些 | 常用的cpu有哪些

每代电脑cpu都有哪些 | 常用的cpu有哪些

1. 常用的cpu有哪些

名称 处理器号 时钟速度 单双核 位数

赛扬 M450 2GHz 单核 32位处理器

赛扬 M440 1.86GHz 单核 32位处理器

赛扬 M430 1.73GHz 单核 32位处理器

赛扬 M420 1.6GHz 单核 32位处理器

赛扬 M410 1.46GHz 单核 32位处理器

赛扬 M390 1.7GHz 单核 32位处理器

赛扬 M380 1.6GHz 单核 32位处理器

赛扬 M370 1.5GHz 单核 32位处理器

赛扬 M360J° 1.4GHz 单核 32位处理器

赛扬 M360 1.4GHz 单核 32位处理器

赛扬 M350J° 1.3GHz 单核 32位处理器

赛扬 M350 1.3GHz 单核 32位处理器

赛扬 M340 1.5GHz 单核 32位处理器

赛扬 M330 1.4GHz 单核 32位处理器

赛扬 M320 1.3GHz 单核 32位处理器

赛扬 M310 1.2GHz 单核 32位处理器

赛扬 M443 1.20GHz 单核 32位处理器

赛扬 M423 1.06GHz 单核 32位处理器

赛扬 M383 1.0GHz 单核 32位处理器

赛扬 M373 1.0GHz 单核 32位处理器

赛扬 M353 900MHz 单核 32位处理器

赛扬 M333 900MHz 单核 32位处理器

赛扬 D350 3.2GHz 单核 32位处理器

赛扬 D345J° 3.06GHz 单核 32位处理器

赛扬 D345 3.06GHz 单核 32位处理器

赛扬 D340J° 2.93GHz 单核 32位处理器

赛扬 D340 2.93GHz 单核 32位处理器

赛扬 D335J° 2.8GHz 单核 32位处理器

赛扬 D335 2.8GHz 单核 32位处理器

赛扬 D330J° 2.66GHz 单核 32位处理器

赛扬 D330 2.66GHz 单核 32位处理器

赛扬 D325J° 2.53GHz 单核 32位处理器

赛扬 D325 2.53GHz 单核 32位处理器

赛扬 D320 2.4GHz 单核 32位处理器

赛扬 D315 2.26GHz 单核 32位处理器

赛扬 D310 2.13GHz 单核 32位处理器

奔腾 M780 2.26GHz 单核 32位处理器

奔腾 M770 2.13GHz 单核 32位处理器

奔腾 M765 2.1GHz 单核 32位处理器

奔腾 M760 2GHz 单核 32位处理器

奔腾 M755 2GHz 单核 32位处理器

奔腾 M750 1.86GHz 单核 32位处理器

奔腾 M745 1.8GHz 单核 32位处理器

奔腾 M740 1.73GHz 单核 32位处理器

奔腾 M735 1.7GHz 单核 32位处理器

奔腾 M730 1.6GHz 单核 32位处理器

奔腾 M725 1.6GHz 单核 32位处理器

奔腾 M715 1.5GHz 单核 32位处理器

奔腾 M705 1.5GHz 单核 32位处理器

奔腾 M778 1.6GHz 单核 32位处理器

奔腾 M758 1.5GHz 单核 32位处理器

奔腾 M738 1.4GHz 单核 32位处理器

奔腾 M718 1.3GHz 单核 32位处理器

奔腾 M773 1.3GHz 单核 32位处理器

奔腾 M753 1.2GHz 单核 32位处理器

奔腾 M733J 1.1GHz 单核 32位处理器

奔腾 M733 1.1GHz 单核 32位处理器

奔腾 M723 1.0GHz 单核 32位处理器

奔腾 M713 1.1GHz 单核 32位处理器

移动式P4 552 3.46GHz 单核 32位处理器

移动式P4 548 3.33GHz 单核 32位处理器

移动式P4 538 3.2GHz 单核 32位处理器

移动式P4 532 3.06GHz 单核 32位处理器

移动式P4 518 2.8GHz 单核 32位处理器

奔腾双核 T2130 1.86GHz 双核 32位处理器

奔腾双核 T2080 1.73GHz 双核 32位处理器

奔腾双核 T2060 1.6GHz 双核 32位处理器

酷睿单核 T1400 1.83GHz 单核 32位处理器

酷睿单核 T1300 1.66GHz 单核 32位处理器

酷睿单核 U1500 1.33GHz 单核 32位处理器

酷睿单核 U1400 1.2GHz 单核 32位处理器

酷睿单核 U1300 1.06GHz 单核 32位处理器

酷睿双核 T2700 2.33GHz 双核 32位处理器

酷睿双核 T2600 2.16GHz 双核 32位处理器

酷睿双核 T2500 2GHz 双核 32位处理器

酷睿双核 T2400 1.83GHz 双核 32位处理器

酷睿双核 T2300 1.66GHz 双核 32位处理器

酷睿双核 T2300E 1.66GHz 双核 32位处理器

酷睿双核 T2700 2.33GHz 双核 32位处理器

酷睿双核 T2600 2.16GHz 双核 32位处理器

酷睿双核 T2500 2GHz 双核 32位处理器

酷睿双核 T2400 1.83GHz 双核 32位处理器

酷睿双核 T2300 1.66GHz 双核 32位处理器

酷睿双核 T2300E 1.66GHz 双核 32位处理器

酷睿双核 L2500 1.83GHz 双核 32位处理器

酷睿双核 L2400 1.66GHz 双核 32位处理器

酷睿双核 L2300 1.5GHz 双核 32位处理器

酷睿双核 U2500 1.2GHz 双核 32位处理器

酷睿双核 U2400 1.06GHz 双核 32位处理器

酷睿2单核 U2200 1.2GHz 单核 32位处理器

2. 目前常用的CPU

1.主频也叫时钟频率,单位是 MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着 CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家 Intel和 AMD,在这点上也存在着很大的争议,我们从 Intel 的产品的发展趋势,可以看出 Intel 很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一块 1G 的全美达来做比较,它的运行效率相当于 2 G 的 Intel处理器。

所以,CPU的主频与 CPU实际的运算能力是没有直接关系的,主频表示在 CPU内数字脉冲信号震荡的速度。在 Intel 的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium 芯片能够表现得差不多跟 2.66 GHz Xeon/Opteron一样快,或是 1.5 GHz Itanium 2大约跟 4 GHz Xeon/Opteron一样快。CPU的运算速度还要看 CPU的流水线的各方面的性能指标。

当然,主频和实际的运算速度是有关的,只能说主频仅仅是 CPU性能表现的一个方面,而不代表 CPU的整体性能。

2.外频外频是 CPU的基准频率,单位也是 MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超 CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器 CPU来讲,超频是绝对不允许的。前面说到 CPU决定着主板的运行速度,两者是同步运行的,如果把服务器 CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为 CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响 CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持 64位的至强 Nocona,前端总线是 800MHz,按照公式,它的数据传输最大带宽是 6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是 CPU与主板之间同步运行的速度。也就是说,100MHz 外频特指数字脉冲信号在每秒钟震荡一亿次;而 100MHz 前端总线指的是每秒钟 CPU可接受的数据传输量是 100MHz×64bit÷8bit/Byte=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道 IA-32架构必须有三大重要的构件:内存控制器 Hub (MCH) ,I/O控制器 Hub 和 PCI Hub,像 Intel 很典型的芯片组 Intel 7501、Intel7505 芯片组,为双至强处理器量身定做的,它们所包含的 MCH为 CPU提供了频率为 533MHz 的前端总线,配合 DDR内存,前端总线带宽可达到 4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方 AMD Opteron 处理器,灵活的 HyperTransport I/O 总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在 AMD Opteron 处理器就不知道从何谈起了。

4、CPU的位和字长位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在 CPU中都是 一“位”。字长:电脑技术中对 CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为 8位数据的 CPU通常就叫 8位的 CPU。同理 32位的 CPU就能在单位时间内处理字长为 32位的二进制数据。字节和字长的区别:由于常用的英文字符用 8位二进制就可以表示,所以通常就将 8位称为一个字节。字长的长度是不固定的,对于不同的 CPU、字长的长度也不一样。8位的 CPU一次只能处理一个字节,而 32位的 CPU一次就能处理 4个字节,同理字长为 64位的 CPU一次可以处理 8个字节。

5.倍频系数倍频系数是指 CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高 CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的 CPU本身意义并不大。这是因为 CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。

一般除了工程样版的 Intel 的 CPU都是锁了倍频的,而 AMD之前都没有锁,现在 AMD推出了黑盒版 CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多。)6.缓存

缓存大小也是 CPU的重要指标之一,而且缓存的结构和大小对 CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升 CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于 CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是 CPU第一层高速缓存,分为数据缓存和指令缓存。内置的 L1高速缓存的容量和结构对 CPU的性能影响较大,不过高速缓冲存储器均由静态 RAM 组成,结构较复杂,在 CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器 CPU的 L1缓存的容量通常在 32—256KB。

L2 Cache(二级缓存)是 CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响 CPU的性能,原则是越大越好,以前家庭用 CPU容量最大的是 512KB,现在笔记本电脑中也可以达到 2M,而服务器和工作站上用 CPU的 L2高速缓存更高,可以达到 8M 以上。

L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加 L3缓存在性能方面仍然有显著的提升。比方具有较大 L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘 I/O 子系统可以处理更多的数据请求。具有较大 L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

其实最早的 L3缓存被应用在 AMD发布的 K6-III 处理器上,当时的 L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的 L3缓存同主内存其实差不了多少。后来使用 L3缓存的是英特尔为服务器市场所推出的 Itanium 处理器。接着就是 P4EE和至强 MP。Intel 还打算推出一款 9MB L3缓存的Itanium2处理器,和以后 24MB L3缓存的双核心 Itanium2 处理器。

但基本上 L3缓存对处理器的性能提高显得不是很重要,比方配备 1MB L3缓存的 Xeon MP处理器却仍然不是 Opteron 的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。 

3. 常用的cpu有哪些品牌

计算机的CPU品牌如下:

1.Intel公司 Intel是生产CPU的老大哥,它占有80%多的市场份额,Intel生产的CPU就成了事实上的x86CPU技术规范和标准。最新的酷睿2成为CPU的首选。

2.AMD公司 目前使用的CPU有好几家公司的产品,除了Intel公司外,最有力的挑战的就是AMD公司,最新的Athlon64x2和闪龙具有很好性价比,尤其采用了3DNOW+技术,使其在3D上有很好的表现。

3.IBM和Cyrix 美国国家半导体公司IBM和Cyrix公司合并后,使其终于拥有了自己的芯片生产线,其成品将会日益完善和完备。现在的MII性能也不错,尤其是它的价格很低。

4.IDT公司 IDT是处理器厂商的后起之秀,但现在还不太成熟。

5.VIA威盛公司 VIA威盛是台湾一家主板芯片组厂商,收购了前述的 Cyrix和IDT的cpu部门,推出了自己的CPU。

6.国产龙芯 GodSon 小名狗剩,是国有自主知识产权的通用处理器,目前已经有2代产品,已经能达到现在市场上INTEL和AMD的低端CPU的水平。

4. CPU有哪几种

第一阶段

第1阶段(1971——1973年)是4位和8位低档微处理器时代,通常称为第1代,其典型产品是Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机。基本特点是采用PMOS工艺,集成度低(4000个晶体管/片),系统结构和指令系统都比较简单,主要采用机器语言或简单的汇编语言,指令数目较少(20多条指令),基本指令周期为20~50μs,用于简单的控制场合。

Intel在1969年为日本计算机制造商Busicom的一项专案,着手开发第一款微处理器,为一系列可程式化计算机研发多款晶片。最终,英特尔在1971年11月15日向全球市场推出4004微处理器,当年Intel 4004处理器每颗售价为200美元。4004 是英特尔第一款微处理器,为日后开发系统智能功能以及个人电脑奠定发展基础,其晶体管数目约为2300颗。

第二阶段

第2阶段(1974——1977年)是8位中高档微处理器时代,通常称为第2代,其典型产品是Intel8080/8085、Motorola公司、Zilog公司的Z80等。它们的特点是采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍(基本指令执行时间1~2μs)。指令系统比较完善,具有典型的计算机体系结构和中断、DMA等控制功能。软件方面除了汇编语言外,还有BASIC、FORTRAN等高级语言和相应的解释程序和编译程序,在后期还出现了操作系统。

1974年,Intel推出8080处理器,并作为Altair个人电脑的运算核心,Altair在《星舰奇航》电视影集中是企业号太空船的目的地。电脑迷当时可用395美元买到一组Altair的套件。它在数个月内卖出数万套,成为史上第一款下订单后制造的机种。Intel 8080晶体管数目约为6千颗。

第三阶段

第3阶段(1978——1984年)是16位微处理器时代,通常称为第3代,其典型产品是Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000等微处理器。其特点是采用HMOS工艺,集成度(20000~70000晶体管/片)和运算速度(基本指令执行时间是0.5μs)都比第2代提高了一个数量级。指令系统更加丰富、完善,采用多级中断、多种寻址方式、段式存储机构、硬件乘除部件,并配置了软件系统。这一时期著名微机产品有IBM公司的个人计算机。1981年IBM公司推出的个人计算机采用8088CPU。紧接着1982年又推出了扩展型的个人计算机IBM PC/XT,它对内存进行了扩充,并增加了一个硬磁盘驱动器。

80286(也被称为286)是英特尔首款能执行所有旧款处理器专属软件的处理器,这种软件相容性之后成为英特尔全系列微处理器的注册商标,在6年的销售期中,估计全球各地共安装了1500万部286个人电脑。Intel 80286处理器晶体管数目为13万4千颗。1984年,IBM公司推出了以80286处理器为核心组成的16位增强型个人计算机IBM PC/AT。由于IBM公司在发展个人计算机时采用 了技术开放的策略,使个人计算机风靡世界。

第四阶段

第4阶段(1985——1992年)是32位微处理器时代,又称为第4代。其典型产品是Intel公司的80386/80486,Motorola公司的M69030/68040等。其特点是采用HMOS或CMOS工艺,集成度高达100万个晶体管/片,具有32位地址线和32位数据总线。每秒钟可完成600万条指令(Million Instructions Per Second,MIPS)。微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业。同期,其他一些微处理器生产厂商(如AMD、TEXAS等)也推出了80386/80486系列的芯片。

80386DX的内部和外部数据总线是32位,地址总线也是32位,可以寻址到4G B内存,并可以管理64TB的虚拟存储空间。它的运算模式除了具有实模式和保护模式以外,还增加了一种“虚拟86”的工作方式,可以通过同时模拟多个8086微处理器来提供多任务能力。80386SX是Intel为了扩大市场份额而推出的一种较便宜的普及型CPU,它的内部数据总线为32位,外部数据总线为16位,它可以接受为80286开发的16位输入/输出接口芯片,降低整机成本。80386SX推出后,受到市场的广泛的欢迎,因为80386SX的性能大大优于80286,而价格只是80386的三分之一。Intel 80386 微处理器内含275,000 个晶体管—比当初的4004多了100倍以上,这款32位元处理器首次支持多工任务设计,能同时执行多个程序。Intel 80386晶体管数目约为27万5千颗。

1989年,我们大家耳熟能详的80486芯片由英特尔推出。这款经过四年开发和3亿美元资金投入的芯片的伟大之处在于它首次实破了100万个晶体管的界限,集成了120万个晶体管,使用1微米的制造工艺。80486的时钟频率从25MHz逐步提高到33MHz、40MHz、50MHz。

80486是将80386和数学协微处理器80387以及一个8KB的高速缓存集成在一个芯片内。80486中集成的80487的数字运算速度是以前80387的两倍,内部缓存缩短了微处理器与慢速DRAM的等待时间。并且,在80x86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协微处理器的80386 DX性能提高了4倍。

第五阶段

第5阶段(1993-2005年)是奔腾(pentium)系列微处理器时代,通常称为第5代。典型产品是Intel公司的奔腾系列芯片及与之兼容的AMD的K6、K7系列微处理器芯片。内部采用了超标量指令流水线结构,并具有相互独立的指令和数据高速缓存。随着MMX(Multi Media eXtended)微处理器的出现,使微机的发展在网络化、多媒体化和智能化等方面跨上了更高的台阶。

1997年推出的Pentium II处理器结合了IntelMMX技术,能以极高的效率处理影片、音效、以及绘图资料,首次采用Single Edge Contact (S.E.C) 匣型封装,内建了高速快取记忆体。这款晶片让电脑使用者撷取、、以及透过网络和亲友分享数位相片、与新增文字、音乐或制作家庭电影的转场效果、使用可视电话以及透过标准电话线与网际网络传送影片,Intel Pentium II处理器晶体管数目为750万颗。

1999年推出的Pentium III处理器加入70个新指令,加入网际网络串流SIMD延伸集称为MMX,能大幅提升先进影像、3D、串流音乐、影片、语音辨识等应用的性能,它能大幅提升网际网络的使用经验,让使用者能浏览逼真的线上博物馆与商店,以及下载高品质影片,Intel首次导入0.25微米技术,Intel Pentium III晶体管数目约为950万颗。

与此同年,英特尔还发布了Pentium IIIXeon处理器。作为Pentium II Xeon的后继者,除了在内核架构上采纳全新设计以外,也继承了Pentium III处理器新增的70条指令集,以更好执行多媒体、流媒体应用软件。除了面对企业级的市场以外,Pentium III Xeon加强了电子商务应用与高阶商务计算的能力。在缓存速度与系统总线结构上,也有很多进步,很大程度提升了性能,并为更好的多处理器协同工作进行了设计。

2000年英特尔发布了Pentium 4处理器。用户使用基于Pentium 4处理器的个人电脑,可以创建专业品质的影片,透过因特网传递电视品质的影像,实时进行语音、影像通讯,实时3D渲染,快速进行MP3编码解码运算,在连接因特网时运行多个多媒体软件。

Pentium 4处理器集成了4200万个晶体管,到了改进版的Pentium 4(Northwood)更是集成了5千5百万个晶体管;并且开始采用0.18微米进行制造,初始速度就达到了1.5GHz。

Pentium 4还提供的SSE2指令集,这套指令集增加144个全新的指令,在128bit压缩的数据,在SSE时,仅能以4个单精度浮点值的形式来处理,而在SSE2指令集,该资料能采用多种数据结构来处理:

4个单精度浮点数(SSE)对应2个双精度浮点数(SSE2);对应16字节数(SSE2);对应8个字数(word);对应4个双字数(SSE2);对应2个四字数(SSE2);对应1个128位长的整数(SSE2) 。

2003年英特尔发布了Pentium M(mobile)处理器。以往虽然有移动版本的Pentium II、III,甚至是Pentium 4-M产品,但是这些产品仍然是基于台式电脑处理器的设计,再增加一些节能,管理的新特性而已。即便如此,Pentium III-M和Pentium 4-M的能耗远高于专门为移动运算设计的CPU,例如全美达的处理器。

英特尔Pentium M处理器结合了855芯片组家族与Intel PRO/Wireless2100网络联机技术,成为英特尔Centrino(迅驰)移动运算技术的最重要组成部分。Pentium M处理器可提供高达1.60GHz的主频速度,并包含各种效能增强功能,如:最佳化电源的400MHz系统总线、微处理作业的融合(Micro-OpsFusion)和专门的堆栈管理器(DedicatedStack Manager),这些工具可以快速执行指令集并节省电力。

2005年Intel推出的双核心处理器有Pentium D和Pentium Extreme Edition,同时推出945/955/965/975芯片组来支持新推出的双核心处理器,采用90nm工艺生产的这两款新推出的双核心处理器使用是没有针脚的LGA 775接口,但处理器底部的贴片电容数目有所增加,排列方式也有所不同。

桌面平台的核心代号Smithfield的处理器,正式命名为Pentium D处理器,除了摆脱阿拉伯数字改用英文字母来表示这次双核心处理器的世代交替外,D的字母也更容易让人联想起Dual-Core双核心的涵义。

Intel的双核心构架更像是一个双CPU平台,Pentium D处理器继续沿用Prescott架构及90nm生产技术生产。Pentium D内核实际上由于两个独立的Prescott核心组成,每个核心拥有独立的1MB L2缓存及执行单元,两个核心加起来一共拥有2MB,但由于处理器中的两个核心都拥有独立的缓存,因此必须保证每个二级缓存当中的信息完全一致,否则就会出现运算错误。

为了解决这一问题,Intel将两个核心之间的协调工作交给了外部的MCH(北桥)芯片,虽然缓存之间的数据传输与存储并不巨大,但由于需要通过外部的MCH芯片进行协调处理,毫无疑问的会对整个的处理速度带来一定的延迟,从而影响到处理器整体性能的发挥。

由于采用Prescott内核,因此Pentium D也支持EM64T技术、XD bit安全技术。值得一提的是,Pentium D处理器将不支持Hyper-Threading技术。原因很明显:在多个物理处理器及多个逻辑处理器之间正确分配数据流、平衡运算任务并非易事。比如,如果应用程序需要两个运算线程,很明显每个线程对应一个物理内核,但如果有3个运算线程呢?因此为了减少双核心Pentium D架构复杂性,英特尔决定在针对主流市场的Pentium D中取消对Hyper-Threading技术的支持。

同出自Intel之手,而且Pentium D和Pentium Extreme Edition两款双核心处理器名字上的差别也预示着这两款处理器在规格上也不尽相同。其中它们之间最大的不同就是对于超线程(Hyper-Threading)技术的支持。Pentium D不支持超线程技术,而Pentium Extreme Edition则没有这方面的限制。在打开超线程技术的情况下,双核心Pentium Extreme Edition处理器能够模拟出另外两个逻辑处理器,可以被系统认成四核心系统。

Pentium EE系列都采用三位数字的方式来标注,形式是Pentium EE8xx或9xx,例如Pentium EE840等等,数字越大就表示规格越高或支持的特性越多。

Pentium EE 8x0:表示这是Smithfield核心、每核心1MB二级缓存、800MHzFSB的产品,其与Pentium D 8x0系列的唯一区别仅仅只是增加了对超线程技术的支持,除此之外其它的技术特性和参数都完全相同。

Pentium EE 9x5:表示这是Presler核心、每核心2MB二级缓存、1066MHzFSB的产品,其与Pentium D 9x0系列的区别只是增加了对超线程技术的支持以及将前端总线提高到1066MHzFSB,除此之外其它的技术特性和参数都完全相同。

单核心的Pentium 4、Pentium 4 EE、Celeron D以及双核心的Pentium D和Pentium EE等CPU采用LGA775封装。与以前的Socket 478接口CPU不同,LGA 775接口CPU的底部没有传统的针脚,而代之以775个触点,即并非针脚式而是触点式,通过与对应的LGA 775插槽内的775根触针接触来传输信号。LGA 775接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。

第六阶段

第6阶段(2005年至今)是酷睿(core)系列微处理器时代,通常称为第6代。“酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。早期的酷睿是基于笔记本处理器的。 酷睿2:英文名称为Core 2 Duo,是英特尔在2006年推出的新一代基于Core微架构的产品体系统称。于2006年7月27日发布。酷睿2是一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Conroe,移动版的开发代号为Merom。

酷睿2处理器的Core微架构是Intel的以色列设计团队在Yonah微架构基础之上改进而来的新一代英特尔架构。最显著的变化在于在各个关键部分进行强化。为了提高两个核心的内部数据交换效率采取共享式二级缓存设计,2个核心共享高达4MB的二级缓存。

继LGA775接口之后,Intel首先推出了LGA1366平台,定位高端旗舰系列。首颗采用LGA 1366接口的处理器代号为Bloomfield,采用经改良的Nehalem核心,基于45纳米制程及原生四核心设计,内建8-12MB三级缓存。LGA1366平台再次引入了Intel超线程技术,同时QPI总线技术取代了由Pentium 4时代沿用至今的前端总线设计。最重要的是LGA1366平台是支持三通道内存设计的平台,在实际的效能方面有了更大的提升,这也是LGA1366旗舰平台与其他平台定位上的一个主要区别。

作为高端旗舰的代表,早期LGA1366接口的处理器主要包括45nm Bloomfield核心酷睿i7四核处理器。随着Intel在2010年迈入32nm工艺制程,高端旗舰的代表被酷睿i7-980X处理器取代,全新的32nm工艺解决六核心技术,拥有最强大的性能表现。对于准备组建高端平台的用户而言,LGA1366依然占据着高端市场,酷睿i7-980X以及酷睿i7-950依旧是不错的选择。

Core i5是一款基于Nehalem架构的四核处理器,采用整合内存控制器,三级缓存模式,L3达到8MB,支持Turbo Boost等技术的新处理器电脑配置。它和Core i7(Bloomfield)的主要区别在于总线不采用QPI,采用的是成熟的DMI(Direct MediaInterface),并且只支持双通道的DDR3内存。结构上它用的是LGA1156接口,i5有睿频技术,可以在一定情况下超频。LGA1156接口的处理器涵盖了从入门到高端的不同用户,32nm工艺制程带来了更低的功耗和更出色的性能。主流级别的代表有酷睿i5-650/760,中高端的代表有酷睿i7-870/870K等。我们可以明显的看出Intel在产品命名上的定位区分。但是整体来看中高端LGA1156处理器比低端入门更值得选购,面对AMD的低价策略,Intel酷睿i3系列处理器完全无法在性价比上与之匹敌。而LGA1156中高端产品在性能上表现更加抢眼。

Core i3可看作是Core i5的进一步精简版(或阉割版),将有32nm工艺版本(研发代号为Clarkdale,基于Westmere架构)这种版本。Core i3最大的特点是整合GPU(图形处理器),也就是说Core i3将由CPU+GPU两个核心封装而成。由于整合的GPU性能有限,用户想获得更好的3D性能,可以外加显卡。值得注意的是,即使是Clarkdale,显示核心部分的制作工艺仍会是45nm。i3 i5 区别最大之处是 i3没有睿频技术。代表有酷睿i3-530/540。

2010年6月,Intel再次发布革命性的处理器——第二代Core i3/i5/i7。第二代Core i3/i5/i7隶属于第二代智能酷睿家族,全部基于全新的Sandy Bridge微架构,相比第一代产品主要带来五点重要革新:1、采用全新32nm的Sandy Bridge微架构,更低功耗、更强性能。2、内置高性能GPU(核芯显卡),视频编码、图形性能更强。 3、睿频加速技术2.0,更智能、更高效能。4、引入全新环形架构,带来更高带宽与更低延迟。5、全新的AVX、AES指令集,加强浮点运算与加密解密运算。

SNB(Sandy Bridge)是英特尔在2011年初发布的新一代处理器微架构,这一构架的最大意义莫过于重新定义了“整合平台”的概念,与处理器“无缝融合”的“核芯显卡”终结了“集成显卡”的时代。这一创举得益于全新的32nm制造工艺。由于Sandy Bridge 构架下的处理器采用了比之前的45nm工艺更加先进的32nm制造工艺,理论上实现了CPU功耗的进一步降低,及其电路尺寸和性能的显著优化,这就为将整合图形核心(核芯显卡)与CPU封装在同一块基板上创造了有利条件。此外,

第二代酷睿还加入了全新的高清视频处理单元。视频转解码速度的高与低跟处理器是有直接关系的,由于高清视频处理单元的加入,新一代酷睿处理器的视频处理时间比老款处理器至少提升了30%。新一代Sandy Bridge处理器采用全新LGA1155接口设计,并且无法与LGA1156接口兼容。Sandy Bridge是将取代Nehalem的一种新的微架构,不过仍将采用32nm工艺制程。比较吸引人的一点是这次Intel不再是将CPU核心与GPU核心用“胶水”粘在一起,而是将两者真正做到了一个核心里。

在2012年4月24日下午北京天文馆,intel正式发布了ivy bridge(IVB)处理器。22nm Ivy Bridge会将执行单元的数量翻一番,达到最多24个,自然会带来性能上的进一步跃进。Ivy Bridge会加入对DX11的支持的集成显卡。另外新加入的XHCI USB 3.0控制器则共享其中四条通道,从而提供最多四个USB 3.0,从而支持原生USB3.0。cpu的制作采用3D晶体管技术,CPU耗电量会减少一半。采用22nm工艺制程的Ivy Bridge架构产品将延续LGA1155平台的寿命,因此对于打算购买LGA1155平台的用户来说,起码一年之内不用担心接口升级的问题了。

2013年6月4日intel 发表四代CPU「Haswell」,第四世代CPU脚位(CPU接槽)称为『IntelLGA1150』,主机板名称为Z87、H87、Q87等8系列晶片组,Z87为超频玩家及高阶客群,H87为中低阶一般等级,Q87为企业用。「Haswell」CPU将会用于笔记型电脑、桌上型CEO套装电脑以及 DIY零组件CPU,陆续替换现行的第三世代「Ivy Bridge」。

5. 常见的CPU有哪些

按位数发展分为五类:

CPU从最初发展至今已有二十多年的历史了,这其期间,按照其处理信息的字长,CPU可以分为:四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器已以及六十四位微处理器,

目前我们常用的处理器主要是intel和AMD的。

6. CPU都有哪些

高通骁龙处理器排行榜前十名

第一名:骁龙888

1、工艺:搭载最新一代5nm制作工艺,为用户带来最强的处理器性能,5nm的制作工艺,带来最为顶尖的技术、成本、功能性能要求。

2、核心:使用了超大核+大核+小核的三丛集架构,其中超大核为Cortex X1,大核为Cortex A78,小核为Cortex A55。

3、体验:超级大核 Cortex-X1拥有1MB的L2缓存,A78大核L2缓存则为256KB,可以给你更好的性能体验,

为用户带来目前最强的架构,在性能方面A78高出20%,机器学习性能更是高出100%

4、优化:针对游戏优化,为用户提供可变着色率,能够提升30%的性能。

5、其他方面:对于游戏其他方面,144Hz高刷新率/高帧率、真10-bit HDR、超现实增强画质、快速混合、

GPU驱动更新、Xbox Cloud/Google Stadia/Amazon Luna云游戏等等。

第二名:骁龙870

1、工艺:采用1*3.19GHz+3*2.42GHz+4*1.8GHz的八核搭配,

2、架构:其中1个大核和3个中核采用的是A77架构,4个小核采用的是A550+。

3、其他方面:骁龙870的GPU是频率升级后的Adreno650,基带使用的依旧是X55 Modem。

4、GPU:搭载的新一代Kryo 585 CPU的性能提升25%,全新Adreno 650 GPU的整体性能较前代平台同样提升25%。

5、体验:带来了7nm的制作工艺,为用户带来最优的手机性能体验

6、像素:十亿像素高速ISP,处理速度高达每秒20亿像素,支持全新的拍摄特性与功能。

7、视频:用户可以拍摄拥有10亿色的4K HDR视频,也可以拍摄8K视频,亦或捕捉高达2亿像素的照片。

第三名:骁龙865

1、CPU:采用全新Kryo 585架构,最高可达2.84GHz;

2、GPU:采用Adreno 650,性能相比骁龙855提升25%;

3、搭配骁龙X55 5G基带,最高支持7.5Gbps的下载速度,支持WiFi 6协议;

4、采用第五代AI引擎,支持15 TOPS的算力;

5、最高支持LPDDR5内存、144Hz屏幕刷新率、2亿像素相机、8K 30帧录像以及无限时960帧慢动作拍摄。

6、CPU主频和骁龙855一致,全新Cortex-A7

7. cpu都有哪些

其功能主要是:解释计算机指令以及处理计算机软件中的数据。 CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。中央处理器主要包括两个部分,即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。 电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据。 在计算机体系结构中,CPU 是对计算机的所有硬件资源(如存储器、输入输出单元) 进行控制调配、执行通用运算的核心硬件单元。CPU 是计算机的运算和控制核心。计算机系统中所有软件层的操作,最终都将通过指令集映射为CPU的操作。

8. cpu的种类有哪些

中央处理器CPU CPU是电脑系统的心脏,电脑特别是微型电脑的快速发展过程,实质上就是CPU从低级向高级、从简单向复杂发展的过程。

一、CPU的概念 CPU(Central Processing Unit)又叫中央处理器,其主要功能是进行运算和逻辑运算,内部结构大概可以分为控制单元、算术逻辑单元和存储单元等几个部分。按照其处理信息的字长可以分为:八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等等。

二、CPU主要的性能指标 主频:即CPU内部核心工作的时钟频率,单位一般是兆赫兹(MHz)。这是我们平时无论是使用还是购买计算机都最关心的一个参数,我们通常所说的133、166、450等就是指它。

对于同种类的CPU,主频越高,CPU的速度就越快,整机的性能就越高。 外频和倍频数:外频即CPU的外部时钟频率。外频是由电脑主板提供的,CPU的主频与外频的关系是:CPU主频=外频×倍频数。 内部缓存:采用速度极快的SRAM制作,用于暂时存储CPU运算时的最近的部分指令和数据,存取速度与CPU主频相同,内部缓存的容量一般以KB为单位。当它全速工作时,其容量越大,使用频率最高的数据和结果就越容易尽快进入CPU进行运算,CPU工作时与存取速度较慢的外部缓存和内存间交换数据的次数越少,相对电脑的运算速度可以提高。

地址总线宽度:地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。 多媒体扩展指令集(MMX)技术:MMX是Intel公司为增强Pentium CPU 在音像、图形和通信应用方面而采取的新技术。这一技术为CPU增加了全新的57条MMX指令,这些加了MMX指令的 CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60%左右。

即使不使用MMX指令的程序,也能获得15%左右的性能提升。 微处理器在多方面改变了我们的生活,现在认为理所当然的事,在以前却是难以想象的。六十年代计算机大得可充满整个房间,只有很少的人能使用它们。六十年代中期集成电路的发明使电路的小型化得以在一块单一的硅片上实现,为微处理器的发展奠定了基础。

在可预见的未来,CPU的处理能力将继续保持高速增长,小型化、集成化永远是发展趋势,同时会形成不同层次的产品,也包括专用处理器。

 

9. cpu主要包括哪些

1、硬件组成一般包括:CPU(中央处理器)、内存、主板、显卡、硬盘、显示器、键盘鼠标、音箱等其它外设,有时还有各种专用的设备如扫描仪、打印机、智能卡等,当然还应该有机箱、电源、导线、信号线等基础东西。 硬件性能指标: CPU:要看主频(就是xxGHz那个参数),现在还要看核心数(单核、双核甚至四核),架构,步进制程,二级三级缓存,前端总线频率、外频、倍频等等指标。一般都是越高越好。基本总体性能与价格正比(同品牌同类型条件下) 内存:容量(512M、1G、2G等),速度(667/800/1066等),技术(DDR、DDR2、DDR3等),现在主流是DDR2 800。

2、MHz,质优价廉,但如果是老主板插不上ddr2只能差ddr的,既贵又慢容量又小。所以性能并不和价格正比。 主板:主要看芯片组(南桥/北桥),芯片组分为Intel、AMD、SiS、nvidia等多家,不同家的没可比性,现在最多的是Intel和AMD两家。Intel由大致低到高是815、845、865、915、945、P31、P35、P43、P45等等,还有G31、G43、X38、X48等,目前比较多的是P35、P43、P45;AMD主要的是770、780、790芯片;nvidia有nf520、Mcp78等。上面都是北桥芯片(主芯片),南桥一般是I/O控制类的,一般随北桥档次提升,有ICH7、8。

3、软件:首要的是操作系统,其次是各种实用软件

10. 常用的cpu有哪些型号

现在英特尔的CPU已经进化到了10代,桌面级的CPU最高核心数已经到了10核心,I3也已经发现到了4核心8线程,但是i3和i9 的差距仅仅是6和核心和12个线程吗?

其实表面上的差距是几个核心的差距,真正差距还有很多被隐藏起来啦,其实CPU厂家在一个硅片上挑选核心,确定其运行频率主要是看一二三级缓存最终能稳定运行的频率,还有就是缓存的通道数,我们打开CPU-Z软件,看看里面的CPU的参数,显示了CPU的核心数,线程数,各级缓存的容量,还会显示各级缓存路数,仔细看看各挡的CPU的缓存路数其实是不一样的,我们知道,内存有单通道双通道,缓存也是有的,几路就是几个通道,结果就是CPU缓存的带宽是不一样的,所以各挡cpu的缓存带宽是不一样的,

还有就是CPU-z里面看不到的,格挡CPU缓存的延迟也是不一样的,造成的影响我们需要跑cpu的测试软件才能看出来。

相关文章

带cpu的平板电脑有哪些 | 平板电脑

带cpu的平板电脑有哪些 | 平板电脑

平板电脑,处理器,有哪些,型号,品牌,1. 平板电脑的处理器有哪些华为处理器的部分排名如下:1、麒麟9000麒麟9000芯片是华为公司于2020年10月22日20:00发布的基于5nm工艺制程的手机Soc,采用1个A77,3个2.54GHz A77,4个2.04GHz A55的八核心设计,最高…

换电脑cpu注意事项 | 电脑更换cpu

换电脑cpu注意事项 | 电脑更换cpu

需要注意,注意事项,笔记本电脑,有哪些,cpu,1. 电脑更换cpu注意事项1、联想B470这款电脑拆机是先从后面拆,先拆小盖板,再拆全部的螺丝,拿出光驱。2、背面螺丝拆完以后撬起键盘(这里要注意键盘后面的排线)。下图中标记的地方都是要注意的。3、拆完…

电脑cpu有哪些散热方式 | cpu散热

电脑cpu有哪些散热方式 | cpu散热

散热器,最好用的,最好的,比较好,多少钱,1. cpu散热器最好1,一般的散热器分为被动散热、侧吹塔式、下压式,还有水冷和液氮。2,被动散热的只有超低功耗和低发热量的CPU使用。3,侧吹塔式的,例如玄冰400,侧吹方式,不能吹到CPU附近的芯片。4,下压式的,例…

电脑8核cpu型号有哪些 | 8核的cpu

电脑8核cpu型号有哪些 | 8核的cpu

处理器,核心,有哪些,有几个,型号,1. 8核的cpu有哪些不是的,8核是指一个CPU有8个核心。8cpu是指安装8个cpu。2. 8个cpu和8核cpu有什么区别四核八线程是指使用了超线程技术 , 把一个物理核心,模拟成 两个逻辑核心, 理论上要像八颗物理核心一样…

最耗cpu的电脑制图软件 | 最耗cpu

最耗cpu的电脑制图软件 | 最耗cpu

性价比,有哪些,画图,好用,最好用,1. 最耗cpu的电脑制图软件有哪些我觉得 cpu 对你制图影响关系不是很大 但是还是强烈建议你用英特尔的理由是 最稳定的某过于英特尔了 万一一个不小心死机啥的 影响工作 AMD的cpu在游戏性能上要超出同价格的…

电脑的哪个部分是CPU | 电脑是哪些

电脑的哪个部分是CPU | 电脑是哪些

组成部分,有什么,都有,是由,几部分,1. 电脑是哪些部分组成显示器:整个电脑的核心,如同电视机一样,主要用来显示当前计算机的运行信息。主机:是计算机的“心脏”,如果打开主机箱就会看到计算机的主要部件,如:主板、中央处理器、硬盘、显示卡等。键…

电脑cpu快速降温的设备 | 电脑cpu

电脑cpu快速降温的设备 | 电脑cpu

方法,妙招,几种,快速,设备,1. 电脑cpu降温方法1,清理笔记本电脑散热器的灰尘,如果风扇有问题,应及时更换风扇,检查CPU硅胶有没有涂抹均匀。2,夏天开空调(降温效果与空调设定的温度有关)笔记本在夏天时候长时间运行会过热建议不要超过两个小时就…

电脑cpu接口有区别吗 | cpu接口为

电脑cpu接口有区别吗 | cpu接口为

接口,作用,都是,几种,区别,1. cpu接口为什么接口和总线接口单元(BIU)两大部分。执行单元(EU)主要有16位的算术逻辑单元(ALU),16位的状态标志寄存器,通用寄存器组和EU的控制电路。EU不与系统总线直接相连,它从BIU的指令队列寄存器中取指令和数…

现在最好的电脑cpu是 | 目前电脑cp

现在最好的电脑cpu是 | 目前电脑cp

最好的,的是,什么牌子,型号,有哪些,1. 目前电脑cpu最好的是什么现在基本都会选择十代处理器,有以下的升级:1,人工智能的引入。2,核显性能提升,Intel在十代酷睿Ice Lake处理器上将核显升级为Gen 11,Gen 11核显最高集成64个执行单元(EU),相比Gen 9核显…

电脑配置换什么cpu好 | 笔记本换什

电脑配置换什么cpu好 | 笔记本换什

电脑配置,本能,笔记,好用,哪款,1. 笔记本换什么cpu好笔记本具体是什么型号的呢,这个是这个处理器的具体参数低压版APU,性能很低的,具体参数如下:适用类型: 笔记本CPU主频: 2GHz动态超频最高频率: 2.2GHz二级缓存: 1MB核心数量: 双核心热设计功耗(TDP…

电脑最新cpu接口类型 | cpu接口种

电脑最新cpu接口类型 | cpu接口种

接口,接口类型,种类,有哪些,都是,1. cpu接口种类i3 2310m 处理器性能还不错Intel 酷睿i3 2310M是一款比较老旧型号的笔记本CPU了, 采用双核心,主频2.1GHz,前端总线1333MHz。 Intel 酷睿i3 2310M 性能卓越,运行稳定。CPU主频:2.1GHz处理器接口类…

cpu架构怎么看国产电脑 | 国产cpu

cpu架构怎么看国产电脑 | 国产cpu

有哪些,最好的,叫什么,怎么看,架构,1. 国产cpu介绍第一名,联发科天玑1200第二名,海思麒麟90005G第三名,海思麒麟9000E第四名,联发科天玑1100第五名,海思麒麟9905G第六名,海思麒麟990第七名,联发科天玑1000+第八名,联发科天玑1000L第九名,海思麒麟990…